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Anisotropic translational diffusion in the nematic phase: Dynamical signature of the coupling
between orientational and translational order in the energy landscape
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We find in a model system of thermotropic liquid crystals that the translational diffusion coefficient parallel
to the director D first increases and then decreases as temperature drops through the nematic phase, and this
reversal occurs where the smectic order parameter of the underlying inherent structures becomes significant.
We argue, based on an energy landscape analysis, that the coupling between orientational and translational
order can play a role in inducing the nonmonotonic temperature behavior of D). Such a view is likely to form
the foundation of a theoretical framework to explain the anisotropic translation diffusion.
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Anisotropic translational diffusion of nonspherical mol-
ecules enjoys immense interdisciplinary interests because of
its importance in physical (liquid crystals), chemical (mi-
celles), and biological (lipids) systems [1-5]. It is particu-
larly important in the uniaxial nematic phase, where the dif-
fusion description invokes D, and D,, the principal
components of the second-rank diffusion tensor, for transla-
tional motion parallel and perpendicular, respectively, to the
macroscopic director [1]. A variety of experimental tech-
niques probe the anisotropic translational diffusion in the
nematic phase [2,3,5]. However, a consensus regarding an
appropriate dynamical model is still lacking. In particular,
the role of coupling between the orientational and transla-
tional order parameters appears to be overlooked.

On the contrary, the interplay between orientational and
translational order has been extensively discussed in the con-
text of the nematic-smectic-A (NSmA) phase transition over
three decades [1,6-13]. The de Gennes-McMillan (dGM)
coupling, which refers to the occurrence of the smectic (one-
dimensional translational) ordering being intrinsically
coupled with increase in the nematic (orientational) ordering
[1,6,7], could drive, within a mean-field approximation, an
otherwise continuous NSmA transition first order for a nar-
row nematic range [6]. Halperin, Lubensky, and Ma later
invoked the coupling between the smectic order parameter
and the transverse director fluctuations in their theoretical
treatment that predicted NSmA transition to be at least a
weak first order [8].

Intuitively, D, appears to be well placed to capture the
dynamical signature of the coupling between orientational
and translational order. Therefore, we here investigate aniso-
tropic translational diffusion in a model system of thermotro-
pic liquid crystals. The observed diffusion behavior of the
system is correlated with the features of its underlying po-
tential energy landscape [14]. In this paper, we show that the
coupling between orientational and translational order can
lead to the nonmonotonic temperature behavior of D; being
reported here.

We have investigated a system of 256 ellipsoids of revo-
lution along two isochors at a series of temperatures. We
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have used the well-established Gay-Berne (GB) pair poten-
tial [15], which explicitly incorporates anisotropy in both the
attractive and the repulsive parts of the interaction with a
single-site representation for each ellipsoid of revolution
[16]. The GB pair potential gives rise to a family of models,
each member of which is characterized by the values chosen
for the set of four parameters (x,«’,u,v) [17]. Here « de-
fines the aspect ratio, that is the ratio of molecular length to
breadth, of the ellipsoid of revolution and ' is the energy
anisotropy parameter defined by the ratio of the depth of the
minimum of the potential for a pair of molecules aligned
parallel in a side-by-side configuration to that in an end-to-
end configuration while u and v are two adjustable expo-
nents that also control the anisotropy in the well depth [17].
We have employed the original and most studied parametri-
zation: k=3, k'=5, u=2, v=1 [15,17]. The isochors have
been so chosen that the range of the nematic phase along
these varies considerably.

Figure 1(a) shows the inverse temperature dependence
of the principal components of the diffusion tensor (in
the logarithmic scale) of the Gay-Berne system with the
aspect ratio 3 along the two isochors considered [18]. D
and D, are obtained from the slopes at long times of the
respective mean square displacements versus time plots:
D=3 lim, . 5(ArK(0)), D, =3 lim, ., $(A” (1)), where
(Arf @) =([r() =) and (AF ()=([r.()-r. (0)]
[19]. Here the subscripts refer to the Cartesian components,
resolved in a system of axes based on the director defined at
each time origin. For the finite size of the system, the aver-
age orientational order parameter S has a nonzero value even
in the isotropic phase [20]. This allows us to compute D; and
D, also in the isotropic phase. It is evident from Fig. 1(a)
that both D and D |, which have nearly identical values in
the isotropic phase, exhibit an Arrhenius temperature depen-
dence in this phase. On crossing the isotropic-nematic (I-N)
phase boundary as temperature drops, Dy first increases and
then decreases while D | continues to undergo a monotonic
decrease following an Arrhenius temperature behavior across
the nematic phase. From the Arrhenius fits to the D data,
we find that the activation energy for the diffusive transla-
tional motion perpendicular to the director remains effec-
tively unchanged on either side of the I-N transition.
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FIG. 1. (a) The self-diffusion coefficients Dy and D, in the
logarithmic scale versus the inverse temperature along two isochors
at densities p=0.32 (circles) and 0.33 (squares), respectively. The
dot-dashed and long-dashed lines are guides for the eye for the D,
data (filled symbols) and the solid lines and the dotted lines are the
Arrhenius fits to the D | (empty symbols) data for p=0.32 and 0.33,
respectively. D, data have been considered separately across the
isotropic phase and the nematic phase for the Arrhenius fits. (b) The
comparison of the scaled D and D, data obtained from our simu-
lations with those predicted by the Hess-Frenkel-Allen (HFA)
model (main frame) and the Chu and Moroi (CM) model (inset).
For the comparison with the HFA model the scaling is done by
(D),, while for the CM model it is done by (D).

A quantitative, albeit indirect, approach to capture the
dynamical signature of the coupling between orientational
and translational order is to compare the D, and D, data
obtained from our simulations with those predicted by the
existing dynamical models, which ignore such coupling. In
Fig. 1(b), we do so by considering two theoretical models
[21,22], that have been applied to trace experimental and
molecular dynamics simulation data of anisotropic transla-
tional diffusion in the nematic phase of liquid crystalline
systems [3,21-24]. The main frame displays the comparison
with the HFA model while the inset shows the same with the
CM model. The latter gives relatively simple expressions for
Dy and D in terms of only the orientational order parameter
S and the shape factor g=m/(4x): Dy=(D)[1+25(1
-2)/(2g+1)] and D, =(D)[1-S(1-g)/(2g+1)], where the
isotropic average is defined by (D)=(2D , +D,)/3. The HFA
model invokes the concept of affine transformation from
the space of isotropic hard spheres and yields the following
expressions: DH=<D>ga[K4/3—2/3K_2/3(K2—l)(l—S)] and
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FIG. 2. The temperature dependence of the average inherent
structure energy per particle along the two isochors at densities
p=0.32,0.33. The inset shows the evolution of the average orienta-
tional order parameter S with temperature both for the inherent
structures (filled) and the corresponding prequenched ones (empty).
The two sets of data are for the same two densities as in Fig. 1(a).
The vertical dot-dashed and dotted lines in the main frame show the
locations of the isotropic-nematic and nematic-smectic phase
boundaries, respectively.

DL=<D>ga[K_2/3+1/3K_2/3(K2— 1)(1-S)], where a=[1
+2/3(k2=-1) (1= [1+1/3(=1)(1-5)]%* and the
geometric average is defined by (D)g=D2l/3D|}/ 3. For the pur-
pose of comparison, we plot scaled D, and D, data. It fol-
lows from Fig. 1(b) that both the models cannot capture the
nonmonotonic temperature behavior of D;. We next demon-
strate directly by performing a landscape analysis that the
nonmonotonic temperature behavior of D, could be due to
the coupling between orientational and translational order.

In the landscape formalism, the potential energy surface is
partitioned into a large number of “basins,” each defined as
the set of points in the multidimensional configuration space
such that a local minimization of the potential energy maps
each of these points to the same local minimum [14]. The
inherent structure corresponds to the minimum configuration
[25]. As a result of this partitioning of the configuration
space, the time-dependent position r;(¢) of a particle i can be
resolved into two components: r;(f)=R;(r)+S,(¢), where
R;(?) is the spatial position of the particle i in the inherent
structure for the basin inhabited at time ¢, and S,(r) is the
intrabasin displacement away from that inherent structure
[26]. That the replacement of the real positions r;(r) by the
corresponding inherent structure positions in the Einstein re-
lations yields an equivalent diffusion description, as has been
theoretically argued and also verified in simulations [26,27],
is the key to our analysis presented here.

Figure 2 displays the average inherent structure energy as
the drop in temperature drives the system across the me-
sophases along two different isochors [28,29]. In the inset of
Fig. 2, we show the concomitant evolution of the average
orientational order parameter S both for the inherent struc-
tures and the corresponding prequenched ones. While the
average inherent structure energy remains fairly insensitive
to temperature variation in the isotropic phase and also in the
smectic phase, it undergoes a steady fall as the orientational
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FIG. 3. The evolution of the smectic-order parameter WV for the
inherent structures with temperature at two densities.

order grows through the nematic phase. We find that D) starts
increasing near the I-N phase boundary at a temperature that
marks the onset of the growth of the depth of the potential
energy minima explored by the system.

The onset of the growth of the orientational order in the
vicinity of the I-N transition induces a translational order in
a layer in the underlying quenched configurations [29]. The
smectic-order parameter W provides a quantitative measure
of the one-dimensional translational order [30]. In Fig. 3, we
show the evolution of the average smectic order parameter ¥
of the inherent structures, obtained by averaging over the
quenched configurations, with temperature [30]. A steady in-
crease in ¥ with the concomitant growth of S in the under-
lying inherent structures is apparent across the nematic
phase.

The interplay between the orientational order and the
translational order, shown in Fig. 3, is reminiscent of the
dGM coupling which was originally conceived to be present
near the nematic-smectic phase boundary in the parent sys-
tem. Figure 4 confirms this with an explicit demonstration of
the coupling between the smectic-order parameter W and the
nematic-order parameter S near the nematic-smectic transi-
tion region. While the fluctuation of § is large at the nematic-
phase, it is the fluctuation of W that is rather large in the
smectic phase. A strong coupling between the two is evident
at the nematic-smectic transition region where configurations
with larger S values tend to have larger W values.

Upon scrutiny of Figs. 1 and 3, we find that the reversal in
the temperature behavior of D; in the nematic phase as tem-
perature drops occurs when the smectic-order parameter in
the underlying inherent structures becomes significant
(above 0.3). The smectic-order parameter is a measure of the
translational order which appears in a layer perpendicular to
the director. The induction of such a translational order
makes translational motion parallel to the director much
more difficult, resulting in a reducing effect on D;. From the
viewpoint of the energy landscape analysis, the translational
order in the underlying inherent structures, therefore, appears
to play a key role in the nonmonotonic temperature depen-
dence of D,. The latter can therefore be taken as a dynamical
signature of the de Gennes-McMillan coupling augmented in
the potential energy landscape.
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FIG. 4. (Color online) The coupling between the orientational
order and the translational order in the Gay-Berne system with the
aspect ratio k=3 at three state points along the isochor at density
p=0.32: at the nematic phase (T=1.194; red, left), at the smectic
phase (T=0.502; blue, right), and at the nematic-smectic transition
region (7=0.785; green, middle). Here S and W denote the respec-
tive order parameters for instantaneous configurations.

System size in the present study has been optimal, given
that the landscape studies have often been restricted to a
smaller system size while long wavelength fluctuations in the
vicinity of a phase transition suggest a bigger one to be un-
dertaken. The system size we have chosen here is, however,
large enough so that the system tracks the phase diagram
reported earlier [17]. Nevertheless, in order to check possible
system size effects on our results, we have further considered
systems with 500 ellipsoids of revolution along the isochor at
density p=0.32. No qualitative change in the results has been
observed (data not shown).

We have further studied effects of varying the aspect ratio
k and the energy anisotropy parameter «’ separately to ex-
plore the robustness of our results and analysis. In particular,
we have considered the aspect ratio k=3.8 along the isochor
at p=0.235, for which a stable Sm-A phase appears between
a wide nematic and low-temperature Sm-B phase. The tem-
perature behavior of D in the nematic phase has been found
to be qualitatively similar to what has been observed with the
aspect ratio k=3, for which the Sm-A phase appears only in
the underlying inherent structure [29]. It is particularly inter-
esting to consider a case where the smectic phase is absent
and contrast the behavior. To this end, we have considered
k" =1, for which no smectic phase appears even at low tem-
peratures and the underlying inherent structures for the nem-
atic phase also do not have on the average any translational
order [29]. In this case, we find that the signature of the
nonmonotonic behavior in the temperature dependence of D,
is rather weak and is even missing in the scaled data (data
not shown)—the dynamical models considered here also pro-
vide a better description of the anisotropic translational dif-
fusion data. This further substantiates the importance of the
coupling between orientational and translational order in the
anisotropic translation diffusion in the nematic phase.

In summary, the present work throws light on the plau-
sible role of the coupling between orientational and transla-
tional order in inducing a nonmonotonic temperature behav
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ior of Dy in the nematic phase. While the competition be-
tween the alignment and thermal effects can also give rise to
a nonmonotonic behavior, the importance of such coupling
cannot be ignored particularly when a low-temperature
smectic phase exists. A comparison of the simulated D, data
with those predicted by two well-known theoretical models
shows the inadequacy of these models to capture the ob-
served nonmonotonic temperature dependence of D). The en-
ergy landscape analysis presented here suggests the necessity
of a theoretical treatment that includes the coupling between
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orientational and translational order, which has an aug-
mented manifestation in the underlying energy landscape.
Such a suggestion is likely to form the foundation of a the-
oretical framework to explain the features anisotropic trans-
lational diffusion.
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